Доведення від супротивного

Геометрія

Основні властивості найпростіших геометричних фігур

Доведення від супротивного

Цей спосіб доведення складається з таких етапів.
1. Припускають протилежне тому, що стверджується теоремою.
2. На основі припущення, спираючись на аксіоми і вже доведені теореми, роблять висновки.
3. Знаходять, у чому цей висновок суперечить умові, якійсь аксіомі або доведеній раніше теоремі.
4. Роблять висновок, що зроблене припущення неправильне, а тому правильне твердження теореми.
Особливо часто використовують цей спо­сіб

доведення, коли треба довести єдиність якого-небудь об’єкта. (Припускають протилежне, тобто що таких об’єктів хоча б два.)
Приклад. Довести, що в трикутнику може бути тільки один тупий кут.
Доведення:
1) Припустимо, що в трикутнику є два тупих кути.
2) Тоді сума кутів трикутника більша за  Доведення від супротивного, тому що міра тупого кута більша за  Доведення від супротивного.
3) Зроблений висновок суперечить теоремі про суму кутів трикутника.
4) Отже, наше припущення неправильне, а правильне те, що треба було довести.




Доведення від супротивного