Перетворення коренів

УРОК 34

Тема. Перетворення коренів

Мета уроку. Познайомити учнів з найпростішими перетворення­ми радикалів: винесення множника за знак радика­ла; внесення множника під знак радикала; зведення радикалів до найпростішого (нормального) вигля­ду; ознайомлення з поняттям подібних радикалів.

І. Перевірка домашнього завдання

1. Фронтальна бесіда за № 1-12, 17-24 із “Запитання і завдання для повторення до розділу III.

2. Виконання вправ № 9, 19 до розділу III.

II. Сприймання і усвідомлення матеріалу про винесення множника за знак

радикала і внесення множника під знак радикала

Вивчені властивості коренів дають змогу виконувати пере­творення коренів.

1. Винесення множника з під знака радикала.

В деяких випадках підкореневий вираз розкладається на множ­ники так, що із одного чи декількох із них можна добути точ­ний корінь. Добувши корені із цих множників, одержані чис­ла можна записати перед знаком кореня. Таке перетворення називається винесенням множника за знак радикала.

Наприклад:

 Перетворення коренів;

src="/image/2/image912.gif" class=""/>;

 Перетворення коренів;

 Перетворення коренів.

Взагалі, якщо a  Перетворення коренів 0, b  Перетворення коренів 0, то  Перетворення коренів.

Якщо a – довільне, то  Перетворення коренів;  Перетворення коренів.

Виконання вправ

1. Винесіть множники за знак радикала:

А)  Перетворення коренів; б)  Перетворення коренів; в)  Перетворення коренів; г)  Перетворення коренів.

Відповідь: а) 3 Перетворення коренів; б) 5 Перетворення коренів; в) ( Перетворення коренів – 1)  Перетворення коренів; г) (1 –  Перетворення коренів)  Перетворення коренів.

2. Винесіть множники за знак кореня, якщо а > 0, b > 0:

А)  Перетворення коренів; б)  Перетворення коренів; в)  Перетворення коренів; г)  Перетворення коренів.

Відповідь: а) 4a2b3  Перетворення коренів; б) a3b  Перетворення коренів; в) – 4a3  Перетворення коренів; г) 3a3  Перетворення коренів.

3. Винесіть множники за знак кореня:

А)  Перетворення коренів; б)  Перетворення коренів; в)  Перетворення коренів; г)  Перетворення коренів.

Відповідь: а) 4a2b3  Перетворення коренів; б) 2|а|3|b| Перетворення коренів; в) |а| Перетворення коренів; г) – 4a3  Перетворення коренів.

2. Внесення множника під знак кореня.

Перетворення, обернене до винесення множника за знак ко­реня, називається внесенням множника під знак кореня.

Наприклад: 2 Перетворення коренів =  Перетворення коренів =  Перетворення коренів; 3 Перетворення коренів =  Перетворення коренів Перетворення коренів =  Перетворення коренів =  Перетворення коренів;

A  Перетворення коренів =  Перетворення коренів Перетворення коренів =  Перетворення коренів =  Перетворення коренів, якщо а > 0;

 Перетворення коренів

Взагалі:

0, b  Перетворення коренів 0, то а Перетворення коренів =  Перетворення коренів.

2) Якщо а – довільне, то  Перетворення коренів;

 Перетворення коренів

1. Внесіть множник під знак кореня:

А) 3 Перетворення коренів; б) -2 Перетворення коренів; в) (1 –  Перетворення коренів) Перетворення коренів; г) (1 –  Перетворення коренів) Перетворення коренів.

Відповідь: а)  Перетворення коренів; б) –  Перетворення коренів; в)  Перетворення коренів; г) –  Перетворення коренів.

2. Внесіть множники під знак кореня, якщо а > 0, b > 0:

А) – b Перетворення коренів; б) аb Перетворення коренів; в) а Перетворення коренів; г) – аb Перетворення коренів.

Відповідь: а) – Перетворення коренів; б)  Перетворення коренів; в)  Перетворення коренів; г)  Перетворення коренів.

3. Внесіть множники під знак кореня:

А) а Перетворення коренів; б) а Перетворення коренів; в) – аb Перетворення коренів.

Відповідь: а)  Перетворення коренів; б)  Перетворення коренів, якщо а  Перетворення коренів 0, –  Перетворення коренів, якщо а < 0; в) – Перетворення коренів, якщо b  Перетворення коренів 0,  Перетворення коренів, якщо b < 0.

III. Сприймання і усвідомлення зведення радикалів до найпростішого вигляду, поняття подібних радикалів

Будемо вважати, що радикал приведено до простішого вигля­ду, якщо: підкореневий вираз не містить дробів; раціональні множники винесено за знак кореня, показник кореня і показ­ник степеня підкореневого виразу скорочено на їхній найбіль­ший спільний множник.

Приклад. Приведемо радикали до простішого вигляду:

1)  Перетворення коренів; 2)  Перетворення коренів.

Радикали називаються подібними, якщо після приведення їх до простішого вигляду вони мають рівні підкореневі вирази і однакові показники.

Наприклад, подібними є радикали: а) 3 Перетворення коренів Перетворення коренів; Перетворення коренів Перетворення коренів; б) 5 Перетворення коренів; Перетворення коренів Перетворення коренів; (а-1) Перетворення коренів.

Раціональний множник, який стоїть перед знаком радикала, називається коефіцієнтом. Наприклад, 3 Перетворення коренів. У цьому виразі 3 є коефіцієнтом.

Щоб стверджувати, що радикали подібні чи ні, їх треба при­вести до простішого вигляду.

Наприклад,  Перетворення коренів і  Перетворення коренів подібні, оскільки  Перетворення коренів= Перетворення коренів=3 Перетворення коренів, а  Перетворення коренів= Перетворення коренів=2 Перетворення коренів.

IV. Підведення підсумків уроку

V. Домашнє завдання

Розділ III § 1 (3; 4). Запитання і завдання для повторення роз­ділу III. № 25-37. Вправи № 28, 33 (1-3), 48 (1-3).