МЕДИЧНА БІОЛОГІЯ
Розділ 1
БІОЛОГІЧНІ ОСНОВИ ЖИТТЄДІЯЛЬНОСТІ ЛЮДИНИ
1.2. Молекулярно-генетичний і клітинний рівні організації життя
1.2.2. Структурно-хімічна і функціональна організація еукаріотичних клітин
1.2.2.6. Органели цитоплазми
Клітинні органели – диференційовані ділянки цитоплазми, що мають специфічний молекулярний склад. Це складні, високовпорядковані біологічні системи макромолекул, що утворюють певну просторову структуру, здатні до виконання спеціальних клітинних функцій. Клітини тварин містять багато
Рис. 1.29. Клітина еукаріотів:
1 – ядро; 2 – гладенька ендоплазматична сітка; З – зерниста ендоплазматична сітка; 4 – рибосоми.
Класифікація органел. Клітинні органели умовно поділяють на мембранні, що оточені типовою біомембраною, і немембранні, що не мають такої оболонки.
Мембранні: 1) ендоплазматична сітка: а) зерниста; б) гладенька;
Немембранні: 1) рибосоми; 2) центріолі; 3) мікротрубочки; 4) мікрофіламенти.
Відповідно до виконуваних функцій розрізняють органели загального і спеціального призначення.
Органели загального призначення зустрічаються у всіх еукаріотичних клітинах і належать до загальних структур.
Спеціальні органели характерні тільки для певного виду клітин, що виконують специфічну функцію. Наприклад, у деяких найпростіших – це джгутики, скоротлива вакуоля, ундулююча мембрана. У м’язових клітинах – скоротливе волокно; нейрони мають довгі відростки, сперматозоїд – акросому тощо.
Ендоплазматична сітка (ЕПС). ЕПС виявлена у всіх еукаріотичних клітинах, відсутня тільки в прокаріотів, у сперматозоїдах і зрілих еритроцитах. ЕПС утворена сіткою мембранних трубочок, цистерн і овальних везикул. ЕПС структурно зв’язана з оболонкою ядра (рис. 1.29). Розрізняють два типи ЕПС: гладеньку і зернисту, хоча вони структурно пов’язані між собою. Зерниста ЕПС на своїй поверхні містить рибосоми, котрих немає на поверхні гладенької ЕПС. ЕПС утворює сітку мембранних каналів, що пронизують цитоплазму.
Ендоплазматична сітка має значення в процесах внутрішньоклітинного обміну, оскільки збільшує площу внутрішніх поверхонь клітини, поділяє її на відсіки, що відрізняються за фізичним станом і хімічним складом, забезпечує ізоляцію ферментних систем, що, у свою чергу, необхідне для послідовного вступу в узгоджені реакції. Безпосереднім продовженням ендоплазматичної сітки є ядерна мембрана, що відмежовує ядро від цитоплазми, так і зовнішня мембрана (плазмолема), розташована на периферії клітини. Мембранні системи дуже лабільні і можуть змінюватися у залежності від фізіологічного стану клітини, характеру обміну, при рості та диференціюванні.
Цитоплазма еукаріотичних клітин містить мембранні шари, пухирці, трубочки, що відокремлюють у сукупності значний внутрішньоклітинний простір. Мембрани ЕПС утворюють безперервні структури із зовнішньою ядерною мембраною, вони спеціалізуються на синтезі й транспорті ліпідів і мембранних білків. Зерниста ЕПС виглядає як система плоских цистерн, зовнішній бік яких вкритий рибосомами, що синтезують білки. Гладенька ЕПС, трубчастої будови, не має рибосом.
Гладенька ЕПС зустрічається у клітинах, що виконують секреторну функцію, м’язових і пігмент
Них клітинах. Зерниста ЕПС добре розвинена у клітинах печінки, підшлункової залози, секреторних клітинах, де утворюється білковий секрет.
Загальні функції ЕПС. Взаємозалежна система гладенької та зернистої ЕПС працює узгоджено і виконує ряд загальних інтегральних функцій: 1) мембрани ЕПС відокремлюють свій специфічний вміст від цитозолю, утворюють спеціальний компартмент; 2) у матриксі ЕПС відбувається нагромадження, збереження і модифікація синтезованих речовин; 3) ЕПС є важливою складовою системи внутрішньоклітинних мембран, забезпечує транспорт синтезованих речовин по внутрішніх порожнинах або за допомогою везикул у різні ділянки клітин;
4) структура ЕПС утворює велику мембранну поверхню всередині клітини, що важливо для багатьох метаболічних реакцій; 5) мембранна система пронизує всю клітину і виступає в якості “внутрішнього скелету”.
Комплекс Гольджі. Комплекс Гольджі (КГ), утворений комплексом із десятків сплощених дископодібних мембранних цистерн, мішечків, трубочок і везикул, у значній кількості зустрічається в секреторних клітинах. Внутрішній міжмембранний простір заповнений матриксом, що містить спеціальні ферменти.
Електронно-мікроскопічні дослідження дозволили переконатися, що КГ збудований із мембран і нагадує стовпчик з порожніх дисків, накладених один на одного (рис. 1.30). До його складу входить система трубочок із пухирцями на кінцях. Комплекс Гольджі має дві зони: зону формування, куди надходить синтезований матеріал із ЕПС за допомогою транспортних везикул, і зону дозрівання, де формується секрет і зрілі секреторні мішечки.
Рис. 1.30. Комплекс Гольджі:
1 – зона формування; 2 – зона дозрівання.
До зони формування надходять синтезовані в ЕПС речовини, що знаходяться в мембранних везикулах. Вони зливаються з мембраною КГ, і вміст везикули надходить всередину комплексу. Речовини обробляються ферментами, після цього знову упаковуються у везикули і переносяться в зону дозрівання.
У зоні дозрівання накопичується “дозрілий секрет”, що відокремлюється у вигляді секреторних пухирців. У цьому компартменті утворюються також лізосоми і пероксисоми.
Функції комплексу Гольджі: 1) нагромадження і модифікація синтезованих макромолекул; 2) утворення складних секретів і секреторних везикул; 3) синтез і модифікація вуглеводів, утворення глікопротеїдів; 4) КГ відіграє важливу роль у відновленні цитоплазматичної мембрани шляхом утворення мембранних везикул і наступного злиття з клітинною оболонкою; 5) утворення лізосом; 6) утворення пероксисом.
Спеціальні функції комплексу Гольджі: 1) формування акросоми сперматозоїда під час сперматогенезу; 2) вітелогенез – процес синтезу і формування жовтка в яйцеклітині.
Таким чином, КГ є головним регулятором руху макромолекул у клітині, він збирає синтезовані білки, жири, вуглеводи, формує транспортні везикули і розподіляє по клітині та за її межі.
Лізосоми – це невеликі (0,2-0,8 мкм), вкриті мембраною, круглі тільця (рис. 1.31). Зустрічаються вони у всіх клітинах рослин і тварин, можуть локалізуватися в будь-якому місці клітини. Вміст лізосом складають різні класи гідролітичних ферментів, наприклад, протеази, нуклеази, ліпази, фосфоліпази та ін. Всього нараховується до 40 різних ферментів.
Рис. 1.31. Клітина еукаріотів:
1 – лізосома.
Ці ферменти руйнують великі молекули складних органічних сполук, що надходять до клітини (білки, нуклеїнові кислоти, полісахариди). У лізосомах зазнають руйнації мікроорганізми і віруси. Ферменти лізосом перетравлюють зруйновані структури або цілі клітини. Ці процеси називаються аутофагією (від грец. αυτός- самий, φάγος- пожирання).
Лізосоми відіграють також істотну роль в індивідуальному розвитку організмів. Вони руйнують тимчасові органи ембріонів і личинок, наприклад, зябра і хвіст у пуголовків жаби, перетинки між пальцями в ембріона людини та ін.
Кожна лізосома вкрита щільною мембраною, що ізолює ферменти від цитоплазми. Ушкодження мембран лізосом і вихід із них у цитоплазму ферментів викликає швидке розчинення (лізис) клітини.
Втрата лізосомами будь-якої ферментативної системи призводить до тяжких патологічних станів цілого організму, до спадкових хвороб. Вони одержали назву хвороб нагромадження, оскільки пов’язані з нагромадженням у клітинах “неперетравлених” речовин, що заважає нормальному функціонуванню клітини. Ці хвороби можуть виявлятися недостатнім розвитком скелета, окремих внутрішніх органів, центральної нервової системи та ін. З дефіцитом лізосомних ферментів пов’язують розвиток атеросклерозу, ожиріння й інших порушень. З іншого боку, патологічна активність лізосом може спричинити руйнування життєво важливих структур.
Лізосоми різноманітні за своєю природою і можуть утворюватися різними шляхами.
У кожному випадку формуються морфологічно різноманітні лізосоми, що розщеплюють матеріал із різних джерел. У центрі цих шляхів знаходиться “проміжний компартмент” – ендолізосома.
Процес перетравлення лізосомними ферментами об’єктів, що надходять до клітини шляхом фагоцитозу, відбувається у вакуолях, які називаються фагосомами. Продукти перетравлення потрапляють у цитоплазму, а неперетравлений матеріал залишається у фагосомах і зменшується в розмірах. Такі структури називаються залишковими тільцями. Вони можуть бути різної щільності та розміру.
Ендосоми лізосом можуть зливатися з внутрішніми структурами і руйнувати їх. У клітині при цьому утворюються великі мішечки, вкриті спільною мембраною, різної форми і щільності. Такі тільця називаються аутофагосомами.
Функції лізосом: 1) перетравлення речовин, що надходять до клітини з навколишнього простору (фагоцитоз), зокрема, таким способом організм бореться з мікробами і вірусами; 2) перетравлення внутрішньоклітинних макромолекул, що виконали свою функцію, і органел (аутофагоцитоз); 3) перетравлення загиблих клітин, або тих, що виконали свою функцію; 4) рециклізація органічних молекул – розщеплення використаних білків, а також вуглеводів, нуклеїнових кислот до мономерів (амінокислот, моносахаридів, нуклеотидів) і повторне їх використання клітиною для синтезу нових молекул. Цим досягається економічність (багатократність) використання внутрішніх молекул.
Пероксисоми. Пероксисоми – маленькі сферичні тільця, вкриті мембраною (рис. 1.32). Виявляються майже у всіх клітинах еукаріотів. їх діаметр становить 0,3-1,0 мкм, утворюються в комплексі Гольджі. Пероксисоми містять в основному ферменти для руйнації пероксиду водню. Пероксид водню, що утворюється в результаті окиснення деяких органічних речовин, є токсичним для клітини і тому негайно руйнується каталазою пероксисоми:
Рис. 1.32. Клітина еукаріотів:
1 – пероксисома, 2 – вакуолі.
Пероксисоми беруть участь у процесі Р-окиснення жирних кислот. До 50 % жирних кислот руйнуються в пероксисомах. Вони містять також й інші окисні ферменти.
Вакуолі. Вакуолі – це порожнини в цитоплазмі, оточені мембраною та заповнені рідиною (рис. 1.32). В еукаріотичних клітинах є різні типи вакуоль. Вакуолі можуть виникати з пухирців, які відокремлюються від ендоплазматичної сітки, або комплексу Гольджі. Вони заповнені водним розчином органічних і неорганічних сполук, серед них – продуктів обміну або пігментів. Функції вакуоль різноманітні: вони підтримують тургорний тиск, зберігають поживні речовини і накопичують продукти обміну. Скоротливі вакуолі одноклітинних тварин регулюють осмотичний тиск у клітині, беруть участь у виведенні продуктів обміну, а також сприяють надходженню в клітину води.
Мітохондрії. Мітохондрії (від грец. μίτος- нитка, χονδράς – зернятко) – це органели, в яких енергія хімічних зв’язків органічних речовин перетворюється на енергію фосфатних зв’язків АТФ. Мітохондрії – досить великі овальні органели (0,2-2,0 мкм), вкриті двома мембранами. Вони зустрічаються майже в усіх еукаріотичних клітинах, за винятком анаеробних найпростіших і еритроцитів. Мітохондрії хаотично розподілені по цитоплазмі, хоча частіше виявляються біля ядра або в місцях із високими потребами енергії. У м’язових клітинах вони розташовані між міофібрилами. Органели можуть змінювати свою структуру і форму, здатні переміщуватися всередині клітини. Кількість мітохондрій може змінюватися залежно від активності клітини від кількох десятків до кількох тисяч.
Органела містить зовнішню і внутрішню мембрани з вузьким міжмембранним простором (рис. 1.33). Внутрішня мембрана утворює численні вирости – кристи, що оточені матриксом, в якому знаходиться багато ферментів, рибосоми, одна молекула ДНК. Мітохондрії – органели розміром з бактерію, що використовують енергію окиснення для утворення АТФ.
Рис. 1.33. Клітина еукаріотів:
1 – мітохондрія; 2 – зовнішня мембрана; 3 – внутрішня мембрана; 4 – криста; 5 – матрикс; 6 – рибосома; 7 – міжмембранний простір.
Зовнішня мембрана легко проникна для багатьох невеликих молекул. Містить ферменти, що перетворюють речовини на реакційноздатні субстрати, бере участь в утворенні міжмембранного простору.
Внутрішня мембрана погано проникна для більшості речовин. Вона утворює вирости – кристи всередині матриксу. Ця мембрана містить ферменти, що беруть участь у наступних важливих процесах:
А) ферменти, що каталізують окисно-відновні реакції дихального ланцюга і транспорту електронів. В результаті утворюється надлишок Н+ у міжмембранному просторі;
Б) специфічні транспортні білки беруть участь в утворенні градієнту Н+;
В) ферментний комплекс АТФ-синтетази, що синтезує АТФ.
Міжмембранний простір використовується для градієнта іонів Н+ на внутрішній мембрані, що є необхідною умовою синтезу АТФ.
Матрикс – це простір мітохондрії, обмежений внутрішньою мембраною. Він утворений сотнями різних ферментів, що беруть участь у руйнації органічних речовин до СО2 і Н2О. При цьому вивільняється енергія хімічних зв’язків між атомами молекул органічних речовин і перетворюється в макроергічні зв’язки АТФ. У матриксі знаходяться рибосоми і молекула мітохондріальної ДНК. Рибосоми мітохондрій і ДНК забезпечують синтез необхідних органелі білків. Основна інтегральна функція мітохондрій – перетворення енергії та утворення АТФ, що містить макроергічні зв’язки.
До мітохондрії надходять різні органічні речовини, які в матриксі окиснюються до найпростіших сполук (СО2 і Н2О). Внутрішні мембрани мають необхідний набір ферментів для перетворення енергії хімічних зв’язків, що вивільняється, в енергію АТФ. Піруват і жирні кислоти надходять до мітохондрії і метаболізуються в циклі лимонної кислоти, в якому утворюється НАДН. Потім у процесі окисного фосфорилування багаті на енергію електрони НАДН передаються на кисень за допомогою дихального ланцюга, що знаходиться на внутрішній мембрані. При цьому в міжмембранному просторі виникає висока концентрація Н+. Це створює електрохімічний потенціал на внутрішній мембрані. Завдяки такому хеміосмотичному механізму утворюється АТФ. АТФ-синтетаза, що використовує енергію градієнта Н+ із АДФ та неорганічного фосфату, синтезує АТФ. АДФ + Фн + енергія градієнта № → АТФ. Енергія АТФ використовується клітиною на рух, скорочення, синтез, транспорт тощо.
Мітохондрії розмножуються шляхом поділу. При поділі клітини вони більш-менш рівномірно розподіляються між дочірніми клітинами. Таким чином між мітохондріями послідовних генерацій клітин здійснюється спадкоємність.
Особливості мітохондрій, що вказують на їхню подібність із прокаріотами, розглядають як доказ симбіотичного походження цієї органели. Згідно з такою гіпотезою, деякі аеробні прокаріоти проникли в більшу анаеробну клітину. Можливо, спочатку вони вели паразитичний спосіб життя. Надалі партнери цього співжиття в процесі еволюції пристосувалися один до одного і колишній “паразит” перетворився в органелу, необхідну для існування клітини. Але як органели предки мітохондрії загубили частину свого генетичного матеріалу. В еукаріотичних клітинах мітохондріальна ДНК кодує лише частину мітохондріальних білків, більша ж кількість їх синтезується поза мітохондріями і пов’язана з ядерною ДНК.
Пластиди. Пластиди – двомембранні органели клітин рослин і деяких тварин (джгутикових). У клітинах вищих рослин розрізняють три типи пластид: хлоропласти, хромопласти та лейкопласти.
Хлоропласти – забарвлені у зелений колір завдяки пігменту хлорофілу. Між зовнішньою та внутрішньою мембранами хлоропластів є міжмембранний простір завширшки близько 20-30 нм. Внутрішня мембрана утворює вгини – ламели та тилакоїди. Ламели мають вигляд плоских видовжених складок, а тилакоїди – сплощених вакуоль або мішечків. Ламели утворюють сітку розгалужених канальців. Між ламелами розміщені тилакоїди, зібрані у вигляді стопки монет (грани). У тилакоїдах знаходяться фотосинтетичні пігменти – хлорофіл, каротиноїди та ферменти, які потрібні для здійснення різноманітних біохімічних процесів (рис. 1.34). У матриксі пластид є також власний білоксинтезувальний апарат (молекули ДНК і рибосоми). Основна функція хлоропластів – фотосинтез.
Рис. 1.34. Будова хлоропласта:
1- зовнішня мембрана; 2 – внутрішня мембрана; З – тилакоїд; 4 – грана.
Лейкопласти – безбарвні пластиди, які відрізняються від хлоропластів відсутністю розвиненої ламелярної системи. Вони забезпечують синтез і гідроліз крохмалю і білків.
Хромопласти – пластиди, які надають забарвлення (жовтого, червоного та ін.) пелюсткам, плодам, листкам. Забарвлення хромопластів зумовлюють пігменти – каротиноїди. Внутрішня мембранна система у хромопластів відсутня або утворена поодинокими тилакоїдами.
Рибосоми. Рибосоми (від лат. ribes – потік, струмінь і грец. σώμα – тіло) – невеликі гранулоподібні сферичні тільця, розміром від 15 до 35 нм. Рибосоми складаються із двох субодиниць, розташовані в цитоплазматичному матриксі або зв’язані з мембранами ендоплазматичної сітки (рис. 1.35).
Рис. 1.35. Клітина еукаріотів: 1 – рибосоми.
Субодиниці рибосом утворюються в ядерці, а потім через ядерні пори окремо одна від одної надходять до цитоплазми. їх кількість у цитоплазмі залежить від синтетичної активності клітини і може складати від сотні до кількох тисяч на одну клітину, їх функцією є синтез білків. Найбільша кількість рибосом виявлена в клітинах, що інтенсивно синтезують білки. Ці органели зустрічаються також у мітохондріальному матриксі й хлоропластах.
Рибосоми будь-яких організмів – від бактерій до ссавців – характеризуються подібністю структури і складу. Кожна субодиниця складається з кількох різновидів молекул рРНК і десятків різновидів білків, приблизно в однаковій пропорції. Маленька і велика субодиниці знаходяться в цитоплазмі окремо одна від одної, доки не беруть участі в білковому синтезі. Вони об’єднуються одна з одною і з молекулою ІРНК за необхідності синтезу і знову роз’єднуються з припиненням процесу.
Якщо з однією молекулою ІРНК з’єднуються кілька рибосом, то утворюються полісоми, що містять від 5 до 70 рибосом.
Клітинний центр (центросома) – органела, що складається з двох дрібних утворень: центріоль і променевої сфери навколо них (рис. 1.36). За допомогою електронного мікроскопа встановлено, що кожна центріоля – це циліндричне тільце довжиною 0,3-0,5 мкм і діаметром близько 0,15 мкм. Стінки циліндра складаються з 9 пар паралельно розташованих мікротрубочок, що утворені білками. Цент – ріолі розміщуються перпендикулярно одна до одної.
Рис. 1.36. Клітина еукаріотів: 1 – центроєома.
Клітинний центр іноді займає геометричний центр клітини (звідси назва органели). Частіше ж він відтиснутий ядром або включеннями до периферії, але обов’язково розташовується поблизу ядра на одній осі з центром ядра і клітини. Активна роль клітинного центра виявляється при поділі клітини. Центріолі подвоюються і розходячись у протилежні боки, формують полюси клітини, що ділиться. Зазначені структури утворюють веретено поділу.
Центріолі беруть участь в утворенні мікротрубочок цитоскелета. Вони також формують базальне тіло, що лежить в основі джгутиків.
Мікротрубочки і мікрофіламенти. Мікротрубочки і мікрофіламенти – це немембранні органели, які побудовані з скоротливих білків (тубуліну, актину, міозину тощо). Мікротрубочки (рис. 1.37) циліндричної форми, порожнисті, діаметром 10-25 нм. Вони беруть участь у формуванні веретена поділу, у внутрішньоклітинному транспорті речовин, входять до складу війок, джгутиків, центріоль.
Рис. 1.37. Клітина еукаріотів: 1 – мікротрубочки.
Мікрофіламенти причетні до формування цитоскелета клітини. Розташовані ці органели під плазматичною мембраною. Пучечки мікрофіламентів одним кінцем прикріпляються до мембрани, а іншим – до різних органел, молекул біополімерів. Вони беруть участь у зміні форми клітини, наприклад, під час її руху. У м’язових клітинах пучечки мікрофіламентів розміщені вздовж їхньої осі (волокна актину та міозину).