Геометрія
Основні властивості найпростіших геометричних фігур
Бісектриса
Бісектрисою кута називається промінь, який виходить із вершини кута, проходить між його сторонами й ділить кут пополам.
На рисунку BD – бісектриса .
Властивості бісектриси
Теорема 1. Бісектриса кута утворює з його сторонами кути, не більші за .
Теорема 2. Бісектриси вертикальних кутів лежать на одній прямій (тобто є доповняльними півпрямими).
Теорема 3. Бісектриси суміжних кутів утворюють прямий кут.
Теорема 4. Бісектриса розгорнутого кута утворює прямий кут з його стороною.
Бісектриса - Довідник з геометрії
Схожі записи:
Зображення просторових фігур на площині Геометрія Стереометрія Зображення просторових фігур на площині Для зображення просторових фігур на площині, як правило, користуються Паралельним проектуванням. Беремо довільну пряму h, яка перетинає площину...
Циліндр Геометрія Тіла обертання Циліндр Круговим циліндром називається тіло, яке складається з двох кругів, що не лежать в одній площині й суміщаються паралельними перенесенням, і всіх...
Циліндр, описаний навколо кулі Геометрія Комбінації геометричних тіл Циліндр, описаний навколо кулі Площина, проведена через центр кулі паралельно твірним циліндра (рисунок нижче зліва), є площиною симетрії тіла. У цьому...
Теорема синусів Геометрія Розв’язування трикутників Теорема синусів Теорема 1 (синусів). Сторони трикутника пропорційні до синусів протилежних кутів. У трикутнику, зображеному на рисунку, за теоремою синусів маємо: ....
Конус Геометрія Тіла обертання Конус Круговим конусом називається тіло, яке складається з круга – Основи конуса, точки, яка не лежить у площині цього круга, – Вершини...
Паралельне перенесення та його властивості Геометрія Рух Паралельне перенесення та його властивості Перетворення фігури F, при якому довільна її точка з координатами переходить у точку , де a і b...
Аксіоми стереометрії Геометрія Стереометрія Аксіоми стереометрії I. Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать їй. Через будь-які дві...
Симетрія відносно точки Геометрія Рух Симетрія відносно точки Нехай O – фіксована точка, X – довільна точка площини. Відкладемо на продовженні відрізка OX за точку O відрізок ,...
Розв’язання трикутників Геометрія Розв’язування трикутників Розв’язування трикутників Розв’язування трикутників полягає у знаходженні невідомих сторін і кутів трикутника за відомими його сторонами та кутами. Результати в таких задачах...
Площа прямокутника Геометрія Площі фігур Площа прямокутника ; ; d = AC; , де R – радіус описаного кола, R = AO....
Декартові координати та вектори в просторі Геометрія Декартові координати та вектори в просторі Візьмемо три взаємно перпендикулярні прямі Oх, Oy, Oz, які перетинаються в одній точці О (див. рисунок). Проведемо через...
Співнаправленість півпрямих Геометрія Рух Співнаправленість півпрямих Дві півпрямі називаються Однаково напрямленими або Співнапрямленими, якщо вони суміщаються паралельним перенесенням (рисунок 1). Теорема. Якщо півпрямі а і b однаково...
Об’єм кулі Геометрія Об’єми тіл Об’єм кулі На рисунку зображено кулю, кульовий сегмент і кульовий сектор. Об’єм кулі: , де R – радіус кулі. Об’єм кульового сегмента:...
Властивості подібних фігур Геометрія Подібність фігур Властивості подібних фігур Теорема. Коли фігура подібна фігурі , а фігура – фігурі , то фігури і Подібні. Із властивостей перетворення подібності...
Скалярний добуток векторів Геометрія Вектори Скалярний добуток векторів Скалярним добутком векторів і називається число . Позначення: . . Очевидно, що . Розподільна властивість скалярного добутку: . Кутом між...
Кут між прямою та площиною Геометрія Стереометрія Кут між прямою та площиною Кутом між прямою та площиною називається кут між цією прямою і її проекцію (ортогональною) на площину. Якщо пряма...
Середня лінія трикутника Геометрія Трикутники Середня лінія трикутника Середньою лінією трикутника називається відрізок, який сполучає середини двох його сторін. Теорема 1. Середня лінія трикутника, яка сполучає середини двох...
Куля, вписана в конус Геометрія Комбінації геометричних тіл Куля, вписана в конус Площина, яка містить вісь конуса, є площиною симетрії (рисунок нижче зліва). Осьовий переріз комбінації є рівнобедреним трикутником,...
Описані кулі Геометрія Комбінації геометричних тіл Описані кулі Кожна грань вписаного у сферу многогранника є вписаним у деяке коло многокутником. Основи перпендикулярів, які опущені з центра описаної...
Розкладання вектора за координатними осями Геометрія Вектори Розкладання вектора за координатними осями Вектор називається Одиничним, якщо його абсолютна величина дорівнює одиниці. Одиничні вектори, які мають напрями додатних координатних півосей, називаються...
Многогранник Геометрія Многогранники Многогранник – це таке тіло, поверхня якого складається із скінченної кількості плоских многокутників. Многогранник називається Опуклим, якщо він лежить по один бік від...
Правильні многокутники Геометрія Многокутники Правильні многокутники Опуклий многокутник називається Правильним, якщо в нього всі сторони рівні й усі кути рівні. Многокутник називається Вписаним у коло, якщо всі...
Перетворення в просторі – Декартові координати та вектори в просторі Геометрія Декартові координати та вектори в просторі Перетворення в просторі Поняття перетворення для фігур у просторі означають так само, як і на площині (див. розділ...
Теорема косинусів Геометрія Розв’язування трикутників Теорема косинусів Теорема (косинусів). Квадрат будь-якої сторони трикутника дорівнює сумі квадратів двох інших сторін без подвоєного добутку цих сторін і косинуса кута...
Перпендикуляр і похила Геометрія Стереометрія Перпендикуляр і похила Перпендикуляром, опущеним із даної точки на дану площину, називається відрізок, що сполучає дану точку з точкою площини й лежить на...
Рівносторонній трикутник Геометрія Основні властивості найпростіших геометричних фігур Рівносторонній трикутник Якщо всі сторони трикутника рівні, він називається Рівностороннім. На рисунку . Теорема 1. У рівносторонньому трикутнику всі...
Означення. Аксіоми Геометрія Основні властивості найпростіших геометричних фігур Означення. Аксіоми Геометрія – це наука про властивості геометричних фігур. Зверніть увагу: геометрична фігура – це не тільки трикутник,...
Рівнобедрений трикутник Геометрія Основні властивості найпростіших геометричних фігур Рівнобедрений трикутник Трикутник називається Рівнобедреним, якщо у нього дві сторони рівні. Ці сторони називаються Бічними сторонами, а третя сторона...
Площа трикутника Геометрія Площі фігур Площа трикутника , де h – висота, a – сторона, до якої проведена ця висота. Оскільки , то . Висоти трикутника обернено...
Теорема Піфагора Геометрія Трикутники Теорема Піфагора Теорема 1 (Піфагора). У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів. Правильною є і теорема, обернена до теореми Піфагора. Теорема...
Координати векторa Геометрія Вектори Координати векторa Нехай вектор має початком точку , а кінцем – точку . Координатами вектора називаються числа і . Позначення: або . ....
Куля Геометрія Тіла обертання Куля Кулею називається тіло, що складається з усіх точок простору, які розташовані від даної точки на відстані, що не більша за дану....
Прямокутник Геометрія Чотирикутники Прямокутник Прямокутник – це паралелограм, у якого всі кути прямі. Властивості прямокутника Оскільки прямокутник є паралелограмом, він має всі властивості паралелограма і ще...
Вектори в просторі – Декартові координати та вектори в просторі Геометрія Декартові координати та вектори в просторі Вектори в просторі Усі основні означення векторів у просторі залишаються такими самими, як означення векторів на площині (див....
Сума кутів трикутника Геометрія Основні властивості найпростіших геометричних фігур Сума кутів трикутника Теорема. Сума кутів трикутника дорівнює . Із цієї теореми випливають наслідки: 1. У будь-якому трикутнику принаймні...