Симетрія відносно прямої

Геометрія

Рух

Симетрія відносно прямої

Нехай а – фіксована пряма. Візьмемо довільну точку Х і опустимо перпендикуляр AX на пряму а. На продовженні цього перпендикуляра за точку А відкладемо відрізок  Симетрія відносно прямої. Точка  Симетрія відносно прямої називається Симетричною точці X відносно прямої А.
 Симетрія відносно прямої
Якщо точка X лежить на прямій а, то вона симетрична сама собі відносно прямої а.
Очевидно, що точка, симетрична точці  Симетрія відносно прямої, є точка X.
Перетворення фігури

F у фігуру  Симетрія відносно прямої, при якому кожна точка X фігури F переходить у точку  Симетрія відносно прямої, симетричну відносно даної прямої а, називається Перетворенням симетрії відносно прямоїА. Отримані фігури називаються Симетричними відносно прямоїА.
Якщо перетворення симетрії відносно прямої а переводить фігуру F у себе, то така фігура називається Симетричною відносно прямоїА.
На рисунках наведені приклади осей симетрії фігур.
 Симетрія відносно прямої
 Симетрія відносно прямої
Теорема. Перетворення симетрії відносно прямої є рухом.


1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5,00 out of 5)


Симетрія відносно прямої - Довідник з геометрії


Симетрія відносно прямої