Геометрія
Декартові координати та вектори в просторі
Візьмемо три взаємно перпендикулярні прямі Oх, Oy, Oz, які перетинаються в одній точці О (див. рисунок).
Проведемо через кожну пару цих прямих площину. Площина, яка проходить через прямі Oх і Oу, називається площиною Oxy. Дві інші площини називаються відповідно Oxz і Oyz.
Прямі Ox, Oy, Oz називаються Координатними осями (Ox – вісь абсцис, Oy – вісь ординат, Oz – вісь аплікат).
Точка їх перетину О – Початок координат, площини Oxy, Oxz, Oyz – Координатні
Точка О розбиває кожну з осей координат на дві півпрямі – півосі. Домовимось одну півось називати додатною, а другу – від’ємною.
Візьмемо тепер довільну точку А й проведемo через неї площину, паралельну площині Oyz. Вона перетинає вісь Ox у деякій точці . Координатою Х точки А називається число, яке дорівнює за абсолютною величиною довжині відрізка . Це число додатне, якщо точка лежить на додатній півосі Оx, і від’ємне, якщо точка лежить на від’ємній півосі.
Якщо
Якщо точка A не належить жодній із координатних площин, то ці площини разом із трьома паралельними їм площинами, які проходять через точку А, обмежують прямокутний паралелепіпед.
Зверніть увагу на таке.
1) осі Oх; осі Oу; осі Oz (див. рисунок).
2)
Для розв’язування задач координатним методом користуються формулою
, що визначає відстань між точками і .
Нехай – середина відрізка AB, де, Тоді ; ; .