Прості й складені числа

Математика – Алгебра

Подільність натуральних чисел

Прості й складені числа

Натуральне число називається Простим, якщо воно має тільки два різних дільники: одиницю й саме це число.
Число, яке має більше двох дільників, називається складеним.
Число 1 має єдиний дільник – 1, тому не належить ні до простих, ні до складених ­чисел.
Приклади
1) Числа 2, 3, 11, 97 – прості.
2) Числа 4, 26, 81 – складені, тому що мають дільники крім 1 і самих себе:  Прості й складені числа;  Прості й складені числа;  Прості й складені числа

class=""/>.
Усі прості числа, за винятком числа 2, непарні.
Простих чисел існує безліч. Найменше з них – 2, а найбільшого не існує. Досі не встановлена закономірність розташування простих чисел у натуральному ряді чисел.
Щоб визначити, чи є натуральне число а простим, треба спробувати знайти хоча б один його дільник, крім 1 і а, за допомогою ознак подільності. Якщо це не вдалося, треба шукати дільники а, поділяючи його на всі такі прості числа b, які відповідають умові  Прості й складені числа.
Наприклад, розглянемо число 37. Воно не є кратним 2, 3, 4, 5, 9, 10, 25.
Прості числа b, такі що  Прості й складені числа,- 2, 3, 5.
На ці числа 37 не ділиться, 37 – просте число.